Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Genetics ; 226(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37816306

RESUMO

Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.


Assuntos
Proteínas do Citoesqueleto , Fatores de Transcrição , Humanos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Fatores de Transcrição/genética , Calbindinas/metabolismo , Patologia Molecular , Encéfalo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
3.
J Comp Neurol ; 531(17): 1772-1795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782702

RESUMO

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.


Mice are a highly tractable model for studying the claustrum complex (CLCX). However, without a consensus on how to delineate the CLCX in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CLCX, to match the level of detail needed to study its functional properties. To improve and expand upon preexisting delineation schemes, we used the combinatorial expression of several markers to create a comprehensive guide to delineate the CLCX and its subregions, including an online reference atlas. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CLCX.


Assuntos
Claustrum , Masculino , Feminino , Camundongos , Animais , Claustrum/metabolismo , Calbindinas/metabolismo , Encéfalo/metabolismo , Parvalbuminas/metabolismo , Roedores/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal
4.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834473

RESUMO

The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.


Assuntos
Proteínas de Ligação ao Cálcio , Ácido gama-Aminobutírico , Cobaias , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Calbindina 2/metabolismo , Calbindinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Parvalbuminas/metabolismo , Glutamatos/metabolismo , Tonsila do Cerebelo/metabolismo
5.
Cancer Res ; 83(16): 2640-2642, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549230

RESUMO

Cancer cell senescence in lung squamous cell carcinoma (LUSC) is associated with a poor response to chemotherapies and immunotherapies due to promotion of an immunosuppressive tumor microenvironment. This environment is shaped by the senescence-associated secretory pathway, which recruits suppressive immune cell populations. In a recent study, Attig and colleagues identified a transcription factor-activated molecular switch that circumvents cellular senescence through increased expression of the calbindin protein. A human endogenous retrovirus (HERV) sequence upstream of the calbindin gene, CALB1, promotes the transcription of an HERVH-CALB1 transcript through a splice event at the third CALB1 exon in a process known as protein exaptation. The KLF5 transcription factor mediates this transcriptional activity by binding at the HERVH sequence, subsequently initiating the chimeric HERVH-CALB1 transcription. This increased expression of calbindin reduces CXCL8 chemokine production and downstream neutrophil recruitment in LUSC tumor cells. CALB1 exaptation by HERVH is one example by which endogenous retroelements (ERE) regulate immunity in human cancers, highlighting the emerging role of EREs in tumor immunity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/genética , Senescência Celular/genética , Calbindinas/genética , Calbindinas/metabolismo , Microambiente Tumoral
6.
J Comp Neurol ; 531(18): 2109-2120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37376715

RESUMO

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.


Assuntos
Doença de Alzheimer , Substância Branca , Animais , Humanos , Substância Branca/metabolismo , Acetilcolinesterase/metabolismo , NADP/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Calbindina 2/metabolismo , NADPH Desidrogenase/metabolismo , Doença de Alzheimer/patologia , Proteína G de Ligação ao Cálcio S100/metabolismo
7.
J Comp Neurol ; 531(18): 1934-1962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357562

RESUMO

Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.


Assuntos
Parvalbuminas , Proteína G de Ligação ao Cálcio S100 , Animais , Camundongos , Calbindinas/metabolismo , Calbindina 2/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/análise , Proteína G de Ligação ao Cálcio S100/metabolismo , Córtex Pré-Frontal , Interneurônios/metabolismo , Lobo Frontal , Macaca mulatta
8.
Theriogenology ; 205: 63-72, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086586

RESUMO

It is important to prolong the productive life of laying hens without compromising their welfare. Therefore, in this study, we aimed to identify the cause for inferior quality egg production of aged hens by investigating the aging-associated molecular changes related to eggshell formation in the isthmic and uterine mucosae and determining whether nitric oxide plays a role in decreasing the quality of eggs produced by aged hens. Young (35 weeks old) and aged (130 weeks old) White Leghorn laying hens were used in this study to determine the effects of age on the expression of proteins related to eggshell membranes formation in the isthmus and eggshell biomineralization and nitric oxide production in the uterus. Nitric oxide synthesis during the ovulatory cycle was examined in twenty-five laying hens (46-52 weeks old) euthanized at 0, 4, 7, 16, and 24 h after oviposition. S-Nitroso-N-acetylpenicillamine (a nitric oxide donor) was added to the cultured isthmic and uterine mucosal cells to examine the effects of nitric oxide on the expression of genes related to eggshell membranes formation and eggshell biomineralization, respectively. The results showed that the protein abundance of collagen I and V in the isthmic mucosa and collagen V in the eggshell membranes were lower in aged hens than in young hens. The mRNA expression levels of calbindin, osteopontin, and ovocalyxin-36 and the protein abundance of calbindin and carbonic anhydrase-2 were lower in the uterine mucosa of aged hens than in that of young hens. Nitric oxide synthesis was higher in the uterine mucosa of aged hens than in that of young hens. Nitric oxide downregulated the mRNA expression levels of osteopontin and ovocalyxin-36 in cultured uterine mucosal cells. Our results indicated that the eggshell quality decreases with aging due to molecular changes in the uterine mucosa affecting the eggshell membrane formation and eggshell biomineralization. Moreover, nitric oxide overproduction may play a role in this dysfunction.


Assuntos
Galinhas , Osteopontina , Animais , Feminino , Osteopontina/metabolismo , Galinhas/metabolismo , Óxido Nítrico/metabolismo , Casca de Ovo/metabolismo , Calbindinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dieta , Ração Animal/análise
9.
Biol Psychiatry ; 94(2): 142-152, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868891

RESUMO

BACKGROUND: Cognitive deficits in schizophrenia are associated with altered GABA (gamma-aminobutyric acid) neurotransmission in the prefrontal cortex (PFC). GABA neurotransmission requires GABA synthesis by 2 isoforms of glutamic acid decarboxylase (GAD65 and GAD67) and packaging by the vesicular GABA transporter (vGAT). Current postmortem findings suggest that GAD67 messenger RNA is lower in a subset of the calbindin-expressing (CB+) class of GABA neurons in schizophrenia. Hence, we assessed if CB+ GABA neuron boutons are affected in schizophrenia. METHODS: For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, PFC tissue sections were immunolabeled for vGAT, CB, GAD67, and GAD65. The density of CB+ GABA boutons and levels of the 4 proteins per bouton were quantified. RESULTS: Some CB+ GABA boutons contained both GAD65 and GAD67 (GAD65+/GAD67+), whereas others contained only GAD65 (GAD65+) or GAD67 (GAD67+). In schizophrenia, vGAT+/CB+/GAD65+/GAD67+ bouton density was not altered, vGAT+/CB+/GAD65+ bouton density was 86% higher in layers 2/superficial 3 (L2/3s), and vGAT+/CB+/GAD67+ bouton density was 36% lower in L5-6. Bouton GAD levels were differentially altered across bouton types and layers. In schizophrenia, the sum of GAD65 and GAD67 levels in vGAT+/CB+/GAD65+/GAD67+ boutons was 36% lower in L6, GAD65 levels were 51% higher in vGAT+/CB+/GAD65+ boutons in L2, and GAD67 levels in vGAT+/CB+/GAD67+ boutons were 30% to 46% lower in L2/3s-6. CONCLUSIONS: These findings indicate that schizophrenia-associated alterations in the strength of inhibition from CB+ GABA neurons in the PFC differ across cortical layers and bouton classes, suggesting complex contributions to PFC dysfunction and cognitive impairments in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Calbindinas/metabolismo , Córtex Pré-Frontal/metabolismo , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902120

RESUMO

Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (PV), vasoactive intestinal peptide, and calbindin-D28k (CaBP-28k), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.


Assuntos
Encéfalo , Privação Materna , Estresse Psicológico , Animais , Camundongos , Encéfalo/crescimento & desenvolvimento , Calbindinas/metabolismo , Parvalbuminas/metabolismo , Estresse Psicológico/metabolismo
11.
J Comp Neurol ; 531(7): 790-813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808394

RESUMO

The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.


Assuntos
Columbidae , Neurônios , Animais , Columbidae/metabolismo , Neurônios/metabolismo , Mamíferos , Calbindinas/metabolismo , Hipocampo/metabolismo
12.
Behav Brain Res ; 437: 114109, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36108778

RESUMO

Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Infecções por HIV , Metanfetamina , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Humanos , Camundongos , Calbindinas/metabolismo , Modelos Animais de Doenças , Infecções por HIV/complicações , Infecções por HIV/psicologia , Metanfetamina/efeitos adversos , Metanfetamina/farmacologia , Camundongos Transgênicos , Recompensa , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/complicações , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo
13.
Anat Rec (Hoboken) ; 306(9): 2264-2275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717590

RESUMO

Along with well-known data on the neurochemical mechanisms of nociceptor activation, there are still no clear data regarding changes in the cellular composition and morphological characteristics of spinal preganglionic neurons (SPN) after capsaicin treatment. The mechanism of capsaicin toxicity differs in developing and mature nerve cells. This study aimed to determine the number of SPN in the autonomic nuclei on spinal cord (SC) sections and their cross-sectional area, the localization, percentage, and profile area of SPN containing neuronal nitric oxide synthase (nNOS) and calbindin (CB) in the thoracic SC of rats of different ages (from birth to 1-year-old) after capsaicin treatment. Neonatal capsaicin treatment generally decreased the cross-sectional area of the SPN pericarya. However, the cross-sectional area of the CB-immunoreactive (IR) SPN increased in the central autonomic area in rats aged 10-30 days old after capsaicin treatment. The number of SPN decreased only in the central autonomic area of rats aged <20 days. The proportion of nNOS-IR neurons remained steady and did not change during development. The cross-sectional area of nNOS-IR SPN in capsaicin-treated rats was less than that in control rats. The results obtained will promote further studies on the mechanisms of sensory processing in the SC and the development of the sympathetic nervous system.


Assuntos
Capsaicina , Neurônios , Ratos , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/fisiologia , Medula Espinal , Fibras Autônomas Pré-Ganglionares/metabolismo
14.
J Comp Neurol ; 531(1): 5-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214727

RESUMO

In the spinal cord, sensory-motor circuits controlling motor activity are situated in the dorso-ventral interface. The neurons identified by the expression of the transcription factor Doublesex and mab-3 related transcription factor 3 (Dmrt3) have previously been associated with the coordination of locomotion in horses (Equus caballus, Linnaeus, 1758), mice (Mus musculus, Linnaeus, 1758), and zebrafish (Danio rerio, F. Hamilton, 1822). Based on earlier studies, we hypothesized that, in mice, these neurons may be positioned to receive sensory and central inputs to relay processed commands to motor neurons. Thus, we investigated the presynaptic inputs to spinal Dmrt3 neurons using monosynaptic retrograde replication-deficient rabies tracing. The analysis showed that lumbar Dmrt3 neurons receive inputs from intrasegmental neurons, and intersegmental neurons from the cervical, thoracic, and sacral segments. Some of these neurons belong to the excitatory V2a interneurons and to plausible Renshaw cells, defined by the expression of Chx10 and calbindin, respectively. We also found that proprioceptive primary sensory neurons of type Ia2, Ia3, and Ib, defined by the expression of calbindin, calretinin, and Brn3c, respectively, provide presynaptic inputs to spinal Dmrt3 neurons. In addition, we demonstrated that Dmrt3 neurons receive inputs from brain areas involved in motor regulation, including the red nucleus, primary sensory-motor cortex, and pontine nuclei. In conclusion, adult spinal Dmrt3 neurons receive inputs from motor-related brain areas as well as proprioceptive primary sensory neurons and have been shown to connect directly to motor neurons. Dmrt3 neurons are thus positioned to provide sensory-motor control and their connectivity is suggestive of the classical reflex pathways present in the spinal cord.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Camundongos , Animais , Cavalos , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Interneurônios/metabolismo , Calbindinas/metabolismo , Tronco Encefálico/metabolismo
15.
Andrologia ; 54(11): e14633, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376057

RESUMO

Calcium-binding proteins (CaBPs) have an essential role in male reproduction by modulating calcium ion metabolism. Although the brain and testis are structurally and functionally different, they show a high degree of transcriptomic and proteomic similarities. The purpose of the present study was to explore some CaBPs (Iba-1, Calbindin, Calretinin and Parvalbumin) and neural cell markers (CNPase, NG2 and Drebrin) expression in rat testis and epididymis during postnatal periods by using immunohistochemistry. Iba-1, calbindin, calretinin, parvalbumin, CNPase, NG2 and drebrin were expressed in the epididymal epithelium in each postnatal period. Iba-1 and calbindin expression showed stage-dependent expression in spermatids. CaBPs and neural cell markers showed a positive reaction in Leydig cells in the postpubertal and mature periods. Sertoli cells, gonocytes, spermatogonium, and peritubular myoid cells showed heterogeneity in the expression of CaBPs and nerve markers throughout postnatal development. Interestingly, CNPase, NG2 and drebrin were positive in spermatocytes, spermatids, and sperm. Expression dynamics of calcium-binding proteins and nerve markers showed differences in germ cells and somatic cells during postnatal development. The expression of these proteins in the testis and epididymis supports that they may have important roles in reproductive physiology.


Assuntos
Epididimo , Testículo , Animais , Ratos , Masculino , Epididimo/metabolismo , Testículo/metabolismo , Calbindina 2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Parvalbuminas/metabolismo , Proteômica , Sêmen/metabolismo , Calbindinas/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo
16.
Contrast Media Mol Imaging ; 2022: 5602011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176934

RESUMO

Purpose: Recent research has indicated that the calcium-binding protein S100A16 promotes carcinogenesis and tumor growth in several forms of cancer. The objective of this study was to examine the relationship between S100A16 and renal cell cancer. Methods: By using The Cancer Genome Atlas (TCGA) database, the differentially expressed gene S100A16 was identified, and its appearance and link to the prognosis of persons with renal cancer were confirmed. Cox regression was used in multivariate analysis, and a nomogram was developed for internal validation. The correlation between S100A16 and immune cells was analyzed in the TIMER database. Moreover, the potential mechanism of action was investigated utilizing GO and KEGG enrichment analyses. Proliferation, migration, and angiogenesis were investigated in vitro, and the involvement of S100A16 in the undesirable biological events of renal cell carcinoma (RCC) was further explored. Results: S100A16 was the differentially expressed molecule identified through database screening. Malignant tissues showed higher S100A16 expression than noncancerous tissues, and S100A16 expression was mostly localized in the cytoplasm. According to the TCGA and KM-plotter datasets, patients with RCC and low S100A16 expression had superior OS, PFI, and DSS. The C-index of the nomogram was 0.754 (0.726-0.782), and the accuracy of the prediction model was high. The TIMER database shows that the expression of S100A16 is associated with immune infiltration and may play an important role in promoting tumor cell immune escape in the RCC tumor microenvironment. S100A16 may influence the biological processes of RCC via the VEGF/VEGFR2 signaling route and PI3K-Akt signaling pathway and through P53 alteration and cell cycle according to the gene enrichment technique. In vitro cytological experiments demonstrated that S100A16 knockdown can inhibit the proliferation and migration of renal cancer cells and the expression levels of VEGF, VEGFR2, and phosphorylated AKT within renal cancer cells, thereby inhibiting angiogenesis in renal cancer cells and resulting in a poor prognosis of RCC. Conclusion: A decrease in S100A16 expression may dramatically increase the OS, PFI, and DSS of patients with RCC and may thus be used as a biomarker for predicting RCC. It may be associated with the immune infiltration of RCC and play a crucial role in the immune evasion of tumor cells within the RCC microenvironment. Intervention of s100a16 can promote the progression and angiogenesis of renal cell carcinoma through the VEGF/VEGFR2 signal transduction pathway and lead to poor prognosis of renal cell carcinoma. These findings suggest a potential target for the development of anticancer strategies for renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas S100 , Biomarcadores , Calbindinas/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Brain Res ; 1793: 148056, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985362

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes several key neuropathological changes and behavioral impairments. In utero exposure to the anti-epileptic valproic acid (VPA) increases risk of an ASD diagnosis in human subjects and timed in utero exposure to VPA is a clinically relevant animal model of ASD. Many human subjects with ASD have cerebellar hypoplasia, fewer Purkinje cells, difficulties with balance, ophthalmic dysfunction and abnormal responses to vestibular stimulation and such vestibular difficulties are likely under reported in ASD. We have recently shown that animals exposed to VPA in utero have fewer neurons in their auditory brainstem, reduced axonal projections to the auditory midbrain and thalamus, reduced expression of the calcium binding protein calbindin (CB) in the brainstem and cerebellum, smaller and occasionally ectopic cerebellar Purkinje cells and ataxia on several motor tasks. Based on these findings, we hypothesized that in utero VPA exposure similarly impacts structure and function of the vestibular brainstem. We investigated this hypothesis using quantitative morphometric analyses, immunohistochemistry for CB, a battery of vestibular challenges, recording of vestibular-evoked myogenic potentials and spontaneous eye movements. Our results indicate that VPA exposure results in fewer neurons in the vestibular nuclei, fewer CB-positive puncta, difficulty on certain motor tasks, longer latency VEMPs and significantly more horizontal eye movements. These findings indicate that the vestibular nuclei are impacted by in utero VPA exposure and provide a basis for further study of vestibular circuits in human cases of ASD.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/metabolismo , Tronco Encefálico/metabolismo , Calbindinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ácido Valproico/metabolismo
18.
Med Mol Morphol ; 55(4): 292-303, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35932315

RESUMO

When regenerated tissue is generated from induced pluripotent stem cells (iPSCs), it is necessary to track and identify the transplanted cells. Fluorescently-labeled iPSCs synthesize a fluorescent substance that is easily tracked. However, the expressed protein should not affect the original genome sequence or pluripotency. To solve this problem, we created a cell tool for basic research on iPSCs. Iris tissue-derived cells from GFP fluorescence-expressing mice (GFP-DBA/2 mice) were reprogrammed to generate GFP mouse iris-derived iPSCs (M-iris GFP iPSCs). M-iris GFP iPSCs expressed cell markers characteristic of iPSCs and showed pluripotency in differentiating into the three germ layers. In addition, when expressing GFP, the cells differentiated into functional recoverin- and calbindin-positive cells. Thus, this cell line will facilitate future studies on iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Iris , Neurônios Retinianos , Animais , Camundongos , Calbindinas/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Iris/citologia , Camundongos Endogâmicos DBA , Recoverina/metabolismo , Neurônios Retinianos/metabolismo
19.
Hippocampus ; 32(10): 752-764, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36018284

RESUMO

Retrosplenial cortex (RSC) is a brain region involved in critical cognitive functions including memory, planning, and spatial navigation and is commonly affected in neurodegenerative diseases. Subregions of RSC are typically described as Brodmann areas 29 and 30, which are defined by cytoarchitectural features. Using immunofluorescence, we studied the distributions of neurons immunoreactive for NeuN, latexin, and calcium binding proteins (calbindin, calretinin, and parvalbumin) in RSC of Carollia perspicillata, Seba's short-tailed fruit bat. We observed that latexin was specifically present in areas 29a and 29b but not 29c and 30. We further identified distribution patterns of calcium binding proteins that group areas 29a and 29b separately from areas 29c and 30. We conclude first that latexin is a useful marker to classify subregions of RSC and second that these subregions contain distinct patterns of neuronal immunoreactivity for calcium binding proteins. Given the long lifespan of Carollia, bat RSC may be a useful model in studying age-related neurodegeneration.


Assuntos
Quirópteros , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quirópteros/fisiologia , Giro do Cíngulo , Parvalbuminas/metabolismo
20.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887305

RESUMO

The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.


Assuntos
Proteínas de Ligação ao Cálcio , Área Pré-Óptica , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Cobaias , Humanos , Masculino , Mamíferos/metabolismo , Parvalbuminas/metabolismo , Fenótipo , Área Pré-Óptica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...